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ABSTRACT

Credit risk assessment has become an important topic in financial risk administration. Fuzzy clustering 
analysis has been applied in credit scoring. Gustafson-Kessel (GK) algorithm has been utilised to cluster 
creditworthy customers as against non-creditworthy ones. A good clustering analysis implemented by 
good Initial Centres of clusters should be selected. To overcome this problem of Gustafson-Kessel (GK) 
algorithm, we proposed a modified version of Kohonen Network (KN) algorithm to select the initial 
centres. Utilising similar degree between points to get similarity density, and then by means of maximum 
density points selecting; the modified Kohonen Network method generate clustering initial centres to get 
more reasonable clustering results. The comparative was conducted using three credit scoring datasets: 
Australian, German and Taiwan. Internal and external indexes of validity clustering are computed and 
the proposed method was found to have the best performance in these three data sets.

Keywords: Credit Scoring, Decision-making, Clustering Techniques, Fuzzy Clustering Algorithms, 
Gustafson-Kessel Algorithm, Kohonen Network  

INTRODUCTION

Banks’ databases contain information about their customers and the financial history of their 
payments. The databases can be utilised to assess the credit risk by investigating whether it 
can be a good basis on which to predict borrowers’ ability to repay their loans on time.

 The credit-scoring technique is commonly 
used to evaluate the creditworthiness of  
credit clients. The credit risk evaluation 
system plays an important role in decision 
making to enable faster decisions for credit, 
lessen the possible risk and reduce the cost 
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of credit analysis. The 2008 financial crisis revealed the importance of credit risk evaluation 
decisions, not only for financial institutions and banks, but also for both the global and local 
economy (Wu, 2008).

The credit models built with a credit risk evaluation technique ought to fulfil two  
essential criteria: precision, which means that they are capable of predicting the behaviour of 
customers, and transparency, which means that the model is able to describe the input-output 
relationship in an understandable way. Credit scoring classifies credit applicants as ‘bad’ or 
‘good’ customers by considering features like age, monthly income, and marital status (Yang, 
2007). Statistical methods have been used most oftenly for assessing credit risk for customers. 
Logistic regression and linear discriminate analysis are most commonly used (Thomas, 2000). 
Accuracy of credit scoring for several neural networks was investigated (West, 2000). Results 
were benchmarked against traditional statistical methods like linear discriminant analysis, 
logistic regression, k-nearest neighbour, and decision trees. Clustering techniques provide 
distinct new options for measurable routines for building credit scoring models. Recently, 
more pragmatic approaches have been adopted, and several classification techniques have 
appeared to perform well for credit scoring. Since the introduction of Fuzzy logic by Zadeh 
in 1965, it has successfully been implemented in many fields like credit scoring. Clustering is 
a technique that is used in data analysis. This method is used to find groups in a data set such 
that there are the most similarities in each group and the most dissimilarity between different 
groups. Gustafson–Kessel (GK) algorithm is one of fuzzy clustering techniques used in credit 
scoring. Gustafson–Kessel (GK) algorithm also has its drawbacks in relation to choosing 
initial centres (Gustafson & Kessel, 1979). In order to overcome the sensitivity of the initial 
point choice and increase the accuracy of credit decisions. Another method was used to obtain 
better initial centres.

In this paper, we modified the kohonen algorithm for selecting the centres of clusters of 
Gustafson-Kessel algorithm. The paper is organised as follows: In section 2, the Clustering 
analysis techniques and Self-Organising Map are described. Section 3 describes the modified 
kohonen algorithm, while Sections 4 provides a brief overview of the measures of cluster 
validity and Section 5 presents the experimental analysis and results. Discussion and conclusion 
are given in Sections 6 and 7, respectively.

MATERIAL AND METHODS

Clustering Analysis Techniques 

Clustering is used to assign a set of objects to groups (called clusters) and the objects in the 
same cluster are more similar than to the objects in other clusters. Based on the similarities 
between the objects, cluster analysis is the classification and the organisation of the objects 
into groups (Gan, Ma, & Wu, 2007). Clustering partition methods can be fuzzy or hard. Hard 
clustering partition methods are based on the classical set theory, which requires an object to 
belong to only one cluster. Fuzzy clustering partition methods allow objects to belong to many 
clusters simultaneously, with different degrees of membership (Touzi, 2010).
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The Gustafson – Kessel Algorithm 

The GK algorithm is a powerful fuzzy clustering technique, with a large number of applications, 
such as image processing and classification systems. The importance of this algorithm lies in 
its ability to estimate the cluster covariance matrix to adapt the distance metric to the shape of 
the cluster (Gustafson & Kessel, 1979).

The GK algorithm needs a set of N samples in the n dimensional space and the number of 
clusters as the input parameters. A fuzzy partition of the data set X can be represented by an 
(N * k) matrix U = [uij], where uij denotes the degree of membership, with which the ith object 
belongs to the jth cluster, where (1 ≤ i ≤ N) and (1 ≤ j ≤ k). U is the fuzzy partition matrix, and 
it must satisfy the following constraints:

	 (1)

The final constraint expresses that the sum of the memberships of an object over the all set 
of clusters must be equal to 1. The number of clusters is at least two. The objective function 
of the GK algorithm is defined as follows:

	 (2)

where

	 (3)

C=(c1,c2,…..,ck) represents the cluster centre in Rn, m represents the fuzziness exponential, 
where , is the distance between the centre cj and the data point xi, 
and uij is the degree of membership of point xi in the jth cluster. Aj is the Mahalanobis distance 
matrix for the jth cluster; if Aj is the identity matrix, then the square Euclidean distance measure 
is obtained. Aj is defined as follows:

 	 (4)

Here n is the number of attributes or features, Vj is the volume of the jth cluster and Fj is 
the cluster covariance matrix from the following formula:

	 (5)
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In the GK algorithm, the cluster shape changes depending on the data, and can be in an 
ellipsoidal form or a hyper ellipsoidal form. For this reason, the GK algorithm employs the 
covariance matrix.

The steps of the GK algorithm are as follows:

1.  Given a dataset X={x1, x2,…., xN}.

2. � Select the k which represent the number of clusters, (2≤k≤N), and select the termination 
condition .

3.  Choose the initial centre cj from the dataset.

4.  Compute the cluster covariance matrix using the formula in equation (5).

5.  Compute the Mahalanobis distance using equation (3).

6.  Compute the partition matrix (uij), as follows:

 	 (6)

where, i=1, 2, …., N, and  j=1, 2, …., k

7.  Update the C-means matrix (cj), as follows:

	 (7)

8. � Repeat the above steps until the centre matrix for two sequential iterations is stable, in 
the following sense:

	 (8)

 where (I) represents the number of iterations.

Self-Organising Map

Networks with supervised training techniques are networks with a target output for every input 
pattern. The networks learn how to produce the outputs that are required; in unsupervised 
training, however, the networks learn to form classifications of the training data without external 
supervision (Yin, 2008). When input patterns and features are shared, the network is able to 
identify those features across the input patterns. An unsupervised system is based on competitive 
learning, in which the neurons that are the output compete among themselves to be activated. 
Only one neuron is activated at any one time, and this activated neuron is called the winning 
neuron (Kohonen et al., 2009). This competition can be implemented if the neurons have 
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parallel inhibition connections (negative criticism ways) among them; therefore, the neurons 
learn to organize themselves. This neural network is called a self-organising map (SOM) and 
projects high-dimensional data onto a low-dimensional grid (Kohonen, 1982).

Kohonen Network 

A Kohonen network is a classification method that forms the basis of self-organising maps 
(SOM) (Kohonen, 1982). The Kohonen network method, which was proposed by Kohonen, 
has a single computational layer arranged in rows and columns, and is a feed-forward structure. 
Every neuron is connected to all the nodes in the input layer or source (Kohonen, 1998). The 
Kohonen algorithm is an unsupervised classified network and it deals with inputs that are 
unable to be led without overlapping in the classes. It is robust (that is, it is able to resist noise); 
therefore, the Kohonen algorithm has interesting properties.

MODIFIED KOHONEN ALGORITHM

The GK algorithm chooses points as initial clustering centres randomly, and different points 
may lead to different solutions. In order to overcome the sensitivity of the initial point choice, 
we modified the Kohonen Network method to obtain better initial centres. The steps of the 
algorithm are as follows:

1. � Compute the similar neighbourhood of each point x of data set X; it is denoted by 
simneighbor (x, r), take x as the centre and r is the threshold value of degree similarity. 
The objects with large degree of (r) are in similar neighbourhood of point x.

	 (9)                                           

�where  is the similarity degree between  and  can be denoted by the 
formula

	 (10)

�and  is normalised Euclidean distance 

(Zhang, 2013). The symbol  is the cosine of the intersection angle of two points 
and can be computed by the formula:

 and its value ranging from -1 to 1.
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2. � Compute the similarity density of each point and it is denoted by Density ( ) where  
belong to X. The formula of density is as 
follows:

	

	 (11)

�The symbol  denoted the points that satisfy the threshold r in similar 
neighbourhood of xi.
The  is the number of points in the neighbourhood of xi.

3. � Choose the points that have high means of max density points as the weights of kohonen 
algorithm. And input the number of nodes (k, which equals the number of weights) and 
let I=1 represent the time or number of iterations.

4. � Compute the distance to nodes by determining the Euclidean distance dj between the input 
data point and each weight:

	 (12)

where  points that have high density in dataset X.          

5. � Select the winning node j* that produces the minimum dj and update the weights at iteration 
I for node j* and its neighbours:

	 (13)

�where  is the learning rate parameter, with the initial learning rate parameter being set 
(usually to a figure between 0.2 and 0.5). The learning rate is initialised at 0.5, and will 
decrease at each iteration by the following expression:

	 (14)

�The nodes in the neighbourhood of j* become more similar to the input vector xi, after 
these updates.
�After optimising the modified Kohonen Network method of selection the initial cluster 
centres, the Gustafson–Kessel Algorithm begins with these centres clustering analysis, 
as follows: 

6. � Input the centres retrieved from the modified Kohonen Network method as the initial 
centres of the clusters.

7.  Compute the cluster covariance matrices using equation (5).

8.  Compute the distances using equation (3).
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9.  Compute the partition matrix using equation (6).

10.  Update the C-means matrix (cj) from the following expression:

11. � Repeat the above steps (6 to 10) until the centres matrix for two sequential iterations (I,I+1) 
are stable in the following sense:

�At this step, the partition matrix gated by fuzzy clustering is used to classify the 
creditworthiness of credit clients.

MEASURES OF CLUSTER VALIDITY

The clustering algorithm always seeks to find the best fit for a fixed number of clusters and the 
shapes of the parameterised cluster. Cluster validity refers to whether a given fuzzy partition 
fits the data at all. The number of clusters is application-specific and is usually identified by 
a user. Cluster validity criteria are applied to determine the optimal number of clusters and a 
good clustering algorithm (Wang & Zhang, 2007). Although there are many cluster validity 
measures that can be used for this purpose, none is perfect. There are mainly two types of 
validity measures: 

•  External measures: using the class label for cluster analysis. 
•  Internal measures: use the vectors for analysis.

Internal Measures

Several internal indices are used simultaneously and the most important ones are described 
below:

Partition Coefficient (PC). This measures the amount of “overlapping” between clusters. 
Bezdek (Bezdek, 1981; Pal & Bezdek, 1995) defines it as follows:

	 (12)

Here, uij is the membership degree of the ith data point to the jth cluster. The best algorithm for 
partitioning the data is the one that produces the highest value of PC.

Classifications Entropy (CE) (Pal & Bezdek, 1995). This measures only the fuzziness of the 
clusters partition, so it has similarity to the Partitions Coefficient.

	 (13)

The best clustering algorithm is the one with the lowest value for this index.
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Partitions Index (SC) (Bensaid, 1996). This is the ratio between the sum of the separation 
and the compactness of the clusters. It is the sum of the cluster validity measures for each 
individual divided by the fuzzy cardinality for each cluster.

	 (14)

When comparing different partitions with an equal number of clusters, SC is useful. A better 
partition can be obtained by a lower value of SC.

Separation Index (S) (Bensaid, 1996). In contrast to the partition index (SC), the separation 
index uses a minimum-distance separation for partition validity, and a lower value of S indicates 
a better partition.

	 (15)

Xie and Beni’s Index (XB) (Xie & Beni, 1991). This aims to measure the proportion between 
the total variation within clusters and the separation of clusters, and it is defined as follows:

	 (16)

This index focuses on separation and compactness properties. The clusters are more separated 
if Index (XB) has a smaller value.

Dunn’s Index (DI) (Xie & Beni, 1991). This index aims to recognise dense and well-separated 
clusters. It is defined as the proportion between the minimal intra-cluster distance and the 
maximal inter-cluster distance. For each cluster partition, this index can be identified as follows:

	 (17)

A high Dunn’s index indictes a desirable algorithm for producing clusters.

Davies-Bouldin index (DB) (Davies & Bouldin, 1979). This index can be identified as follows:

 	 (18)

Here n is the number of clusters, cj  and ci  are the centres of cluster, while dj and di are the 
average distances of all elements in clusters j and i respectively, and d(ci,cj) is the distance 
between the centres ci and cj. The best algorithm is the clustering algorithm that produces a 
collection of clusters with the smallest DB index.
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External Measures

These methods give an indication of the quality of the resulting partitioning and thus they can 
only be considered as a tool at the disposal of the experts in order to evaluate the clustering 
results. Fuzzy Rand Index is a well-known measure of similarity between two partitions of a 
data set (Hullermeier, 2012). Given a fuzzy partition P = {P1, P2 ,…, Pk} of  X, each element 
x  X can be characterised by its membership vector.

P(x) = (P1(x), P2(x) ,…, Pk(x))  [0; 1]k	 (19)

where Pi(x) is the degree of membership of x in the i-th cluster Pi. A similarity measure on the 
associated membership vectors (19) can be formed as:

EP(x, x’) = 1 - ||P(x) - P(x’)||	 (20)

Where, ||.|| is a proper metric on [0; 1]k if  two fuzzy partitions P and Q are given. To 
generalise the concept of concordance, a pair (x; x’) is defined and the degree of concordance is:

conc(x, x’) = 1 -||EP(x, x’) - EQ(x, x’)||  [0 1]	 (21)

the degree of discordance is:

disc(x, x’) = ||EP(x, x’) - EQ(x, x’)||	 (22)

the distance measure on fuzzy partitions is then defined by the normalised sum of degrees of 
discordance:

	 (23)

Likewise,

RE(P,Q) = 1 - d(P,Q)	 (24)

Corresponding to the normalised degree of concordance, and therefore, it is a direct 
generalisation of the original Rand index. Rand index is a similarity measure which assumes 
values between 0 and 1. If near 1 means that the i-th cluster in P and the i-th cluster in Q are 
identical, thus P=Q.

EXPERIMENTAL ANALYSIS AND RESULTS

Data Sample 

We run experiments on three real-life data sets: Australian credit data, German credit data and 
Taiwan credit data (UCI machine learning databases). The Australian credit data are composed 
of 690 entries, of which 307 match creditworthy clients and 383 match bad clients. Each entry 
is described by 14 features or attributes, 6 of which are continuous, while the remainders are 
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categorical. The German credit data consist of 1000 entries, 70% of which correspond to 
clients who are a good credit risk and 30% of which relate to clients to whom credit should be 
refused or who are bad credit risk. Each client is described by 20 features, including personal 
information such as age, sex and marital status, existing accounts, credit history records, loan 
amount and purpose and employment status. Seven features are continuous, and the rest are 
categorical. Taiwan data are composed of 30000 entries, with 23 features and of which 23364 
match creditworthy clients and 6636 match bad clients. Table 1 shows the characteristics of 
the datasets.

Table 1
Characteristics of the data sets used in the experiment

Dataset Number of features Number of data Number of groups 

Australian 

Germany

Taiwan 

14
20
23

690
1000
30000

2
2
2

Implementation 

The work was implemented using MATLAB version R2010a by creating a programme to 
perform the GK algorithm, GK+MK) algorithm and modified kohonen algorithm. Tables 2, 
3 and 4 show the results for the objective function, number of iterations, as well as internal 
indexes and external indexes.

Table 2
The validity measures of Australian credit data

Algorithm   
Gustafson-
Kessel(GK)

Gustafson-Kessel  with 
Kohonen Network 

method(GK+K)

Gustafson-Kessel  with  
modified Kohonen Network 

method (GK+MK)
validity 

measures
PC 0.8277 0.8487 0.8959
CE 0.3897 0.3269 0.3247
SC 2.9343 1.8472 1.7238
S 1.7605 1.5121 1.2952

XB 1.5017 0.9084 0.3133
DI 1.4938e-005 1.4938e-005 1.2282
DB 1.4972 1.4972 0.8140

J (objective 
Function)

94.2459 90.3452 80.3230

No. iteration 31 25 20
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Table 3
The validity measures of German credit data

Algorithm  
Gustafson-Kessel 

(GK)	

Gustafson-Kessel  with 
Kohonen Network method 

(GK+K)

Gustafson-Kessel with 
modified Kohonen method 

(GK+MK) validity measures

PC 0.5698 0.8007 0.8854
CE 0.6084 0.6374 0.5394
SC 0.5694 0.4421 0.3869
S 0.2952 0.2480 0.2039

XB 0.1721 0.1678 0.1216
DI 0.2741 0.2489 0.1234
DB 0.7487 0.7387 0.6387

J(objective 
Function)

417.3321 316.3481 250.3240

No. iteration 19 15 12

Table 4
The validity measures of Taiwan credit data

Algorithm  
Gustafson-

Kessel (GK)

Gustafson-Kessel  with 
Kohonen Network method 

(GK+K)

Gustafson-Kessel modified 
with Kohonen Network 

method (GK+MK) validity measures

PC 0.5000 0.5035 0.7432
CE 0.6931 0.6894 0.5437
SC 6.1690 5.8680 1.8760
S 8.1324 1.1483 0.5630

XB 1.5423 1.5212 0.5481
DI 0.0043 0.0045 0.0033
DB 0.8709 0.8709 0.7540

J(objective 
Function)

155 153 140

No. iteration 10 6 5

Table 5
The fuzzy rand validity measure of three credit data

Algorithm Gustafson-
Kessel (GK)

Gustafson-Kessel  with 
Kohonen Network method 

(GK+K)

Gustafson-Kessel modified 
with Kohonen Network 

method (GK+MK)data

Australian 0.8600 0.8803 0.9410
Germany 0.7888 0.8406 0.9032
 Taiwan 0.8476 0.8530 0.8942
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DISCUSSION

As shown in the summarised results, the modified Kohonen method with Gustafson-Kessel 
algorithm (GK+MK) has the best performance for the three data sets, since it has a smaller 
distance function (objective function) and a lower number of iterations for the three data sets.

Table (2) shows the internal index values for the Australian data for GK, GK+K  
and GK+MK. The value of the first index (the partitions index, PC) for the GK+MK  
algorithm is near to 1, which is greater than its value for the GK and GKK. The value of the 
second index (the Classification Entropy, CE) for the GK+MK algorithm is less than the 
value for the GK and GKK. It can be seen that the values of the other indexes (SC, S, XB) for  
the GK+MK algorithm are lower than the values for the GK algorithm, but DI and DB for  
two algorithms are equal, which mean the algorithms well-separated clusters. The objective 
function GK+MK algorithm is less than the value for the GK and GK+K Algorithms. The 
number of iterations is 31 for the GK Algorithm, which is greater than the iterations of GKK 
algorithm 25.

In Table 3, the index values of the German data are showed. The partitions index value 
(PC) for the new GK+MK algorithm is greater than the value of GK and GKK algorithm, 
which means the GK+MK algorithm is the best. The Classification Entropy, CE in GK+MK 
algorithm is less than the value in GK and GKK algorithm, which means the fuzziness of 
the clusters partition for GK+MK algorithm is less than its coordinate for the GK and GKK 
algorithm. The other indexes (SC, S, and XB) for the GK+MK algorithm are lower than the 
values for the GK and GKK algorithm.

DI and DB for the two algorithms are unequal, which means the GK+MK algorithms are 
well-separated clusters than the GK and GKK algorithm. In addition, the objective function 
and number of iterations for GK+MK algorithm are less than the value of the two algorithms.

Table 4 shows the internal index values for the Taiwan data for the algorithms. The values of 
the two indexes (the partitions index, PC and Dunn’s index DI) for the new GK+MK algorithm 
are high, while the values of the other indexes (SC, S, XB , DB) are low. The results indicate 
that the new GK+MK algorithm is the best.

Table 5 shows the fuzzy rand validity measure of three credit data. The results show that  
the values of GK+MK are greater than values of the two other method fuzzy partitions are 
robust.

CONCLUSION

In this paper, a new modified Kohonen method to centres selection of fuzzy clustering was 
proposed. Developing and improving the GK algorithm to identify the centres of clusters, the 
three algorithms were applied to three datasets. A comparative study among the algorithms 
was carried out.

The cluster internal validity indexes confirmed that the performance of the proposed 
algorithm (GK+MK) is better than that of the GK and GKK algorithms. A fuzzy validity index 
is applied in this paper for evaluating the fitness of clustering to data sets.
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